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ABSTRACT 

It is known from work of du Sautoy and Grunewald in [duSG1] that  

the zeta functions counting subgroups of finite index in infinite nilpotent 

groups depend upon the behaviour of some associated system of algebraic 

varieties on reduction modp.  Further  to this, in [duS1, duS2] du Sautoy 

constructed a group whose local zeta function was determined by the 

number  of points on the elliptic curve E : y2  = X s _ X.  In this work we 

generalise du Sautoy's  construction to define a class of groups whose local 

zeta functions are dependent upon the number  of points on the reduction 

of a given elliptic curve with a rational point. We also construct a class 

of groups that  behave the same way in relation to any curve of genus 2 

with a rational point. We end with a discussion of problems arising from 

this work. 

1. I n t r o d u c t i o n  

In [GSS] Grunewald, Segal and Smith introduced the notion of a zeta function 
for an infinite group G encoding (normal) subgroups of finite index: 

(a(s)= ~ IG:H1-8 and ( ~ ( s ) =  ~ IV:HI  -8. 
H<IG H~IG 

In particular, they considered these functions for an infinite nilpotent group, as 

for groups of this type, the global zeta functions split as an Euler product of local 
zeta functions: 

p prime p H*pG 
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where * E {<,,~}. Since then most effort in this subject area has gone into 

understanding the nature of these local factors for specific torsion free nilpotent 

groups. In [GSS] it was shown that  there exists a Lie algebra L over Z associated 

to G so that  for ahnost all primes we have 

CLp(*) = ¢5,p(s), 

where ~*L,p(S) counts subalgebras/ideals of finite index in L. 

Furthermore, the authors demonstrated that  ~,p(S) could be expressed as a 

p-adic integral ove r  Trd(Zp), the upper triangular d × d matrices over Zp, and by 

applying some model theory and work of Denef [D] established the rationality in 

p-S of these functions. 

By evaluating the integrals explicitly, du Sautoy and Grunewald demonstrated 

an intriguing link between the zeta function and the arithmetic of some algebraic 

varieties. In particular, they showed that  the zeta function of an infinite nilpotent 

torsion free group is dependent upon the number of points on the reduction m o d p  

of some associated system of algebraic varieties. The question then is: what type 

of varieties can arise in the evaluation of the zeta function of an infinite torsion 

free nilpotent group? 

Du Sautoy provided the first interesting answer [duS1, duS2] to this question 

by constructing a group G(E) for which we have 

C~,p(S) = PI(p,p-*)  + [E&p)IP2(p,p -~) 

for rational functions P1, P2 and for the elliptic curve E : y2  = X 3 _ X.  In 

[GSS] the authors asked whether every torsion free nilpotent group should have 

a finitely uniform (normal) zeta function. In other words, given any such group 

should we expect that  finitely many rational functions will describe all the local 

zeta functions as p varies. Du Sautoy exploited well known arithmetic properties 

of the above elliptic curve to show that  for this group the zeta function is not 

finitely uniform. 

The aim of this paper is to extend this work of du Sautoy and produce a larger 

class of algebraic varieties whose reduction modp  is encoded in the subgroup 

structure of some infinite nilpotent group. In particular, we prove 

THEOREM 1: Let E be an elliptic cm've defined over Q with a rational point 

in Q. Then there exists a 9 generated, class 2 infinite torsion-free nilpotent 

group G, associated Lie algebra L, associated lines M1, M2 and rational functions 

P 1 , . . . , P 5  E Q( X ,Y)  so that for almost all primes p, in particular including 
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primes dividing neither the discriminant nor the coefficients of the curve, we 

have 

~5,p(S) = ¢~,p(s) =Pl (p, p -8) + IE(Fp )lP2(p, p -~) + IM1 r-? E(IF~ )IP3(p, p -~) 

+ P4(p,p-~)lM2 r7 E(Np) I + P5(p,p-~)lM~ rn M2 r~ E(Fp) I. 

Furthermore, P2 ~ O. 

THEOREM 2: Let C be a curve of genus 2 overQ with a rational point in Q. Then 

there exists a 15 generated, class 2 torsion-free nilpotent group G and associated 

Lie algebra L, I E N, rational functions P, Q I , . . . ,  Ql c Q(X, Y)  and varieties 

V1,. . . ,  Vt defined over Q so that for almost all primes p 

l 
¢5,p(S) = o __ ¢L ,p ( s )  lc(F~)IP(p,p -~) + ~ Iv~(F;)lq~(p,p-~). 

i = 1  

Furthermore, it is strictly necessary to count points on the curve C in the eval- 

uation of the zeta function. In particular, the Vi are varieties of genus smaller 

than 2 and C occurs in the subring of the motivic zeta function one can associate 

to the group G. 

The method of proof is as follows: given a torsion free nilpotent group with a 

presentation 
d k 

a : <x, . . . .  , x ~ :  [x, ,  x j ]  = H x~°'~> 
k----1 

we take the Lie algebra L associated to G via the Mal'cev correspondence which 

has a presentation 

d 

L = (e  I . . . . .  e d :  ( e i , e j )  ---- Eat i ' j ek) .  
k = l  

For details on this correspondence consult [Se]. 

Defining Cj for j = 1 . . . . .  d to be the matrices with (i, k)-entry cik(j) where 

d 

(el, ej) = E cik(j)ek, 
k = l  

it is known that  [duSG1] 

~2,p(s) = (1 - p-1) -a  [ im111~-1 . . .  ima,18-aldxl 
Jv 2 



70 C. GRIFFIN Isr. J. Math. 

where here we define 

v ;  -- {M • T d(Zp): miV M ÷ = md (V } . . . .  , V J) for some • Zp} 

and [dx[ is the normalized Haar measure on Trd(Zp). Here we have denoted by 

Trd(Zp) the d x d upper triangular matrices with entries from Z;,  by m__A~ the i-th 

row of the matrix M and by M + the adjoint matrix of M. We then evaluate this 

integral by parts. 

The paper  is organised as follows: we prove Theorem 1 in Sections 2 and 3, and 

then Theorem 2 in Section 4. In Section 5 we discuss the associated problems 

of evaluating the zeta functions attached to the groups in question that  count 

all subgroups of finite index, not merely normal subgroups. In Section 6 we 

discuss some problems arising from this work. We include in an Appendix the 

determinants arising in the calculation of the zeta functions in Sections 2 and 3. 

This work is part  of the author 's  PhD thesis, Nottingham, 2002, carried out 

with the support  of an EPSRC studentship, and under the supervision of Pro- 

fessor Ivan Fesenko. The work was prepared for publication whilst the author 

was the holder of a GTEM post-doctoral research fellowship at the University 

of Heidelberg. The author would like to thank EPSRC and the University of 

Heidelberg for their financial support,  and also I. Fesenko, M. du Sautoy and M. 

Edjvet for their helpful comments. 

2. P r o o f  o f  T h e o r e m  1 

Let E be an elliptic curve defined over Q with a rational point in Q. By means 

of a linear shift in X, Y we may assume that  0 E E(Q) and so E has an equation 

of the form [M1] 

Y~ + alY + a2XY --- X 3 -[- a3 X2 -[- a4X. 

A transformation Y ~ Y - (a2/2)X enables us to write the curve as 

or projectively as 

y 2  q_ a 3 Y  = X 3 -~- o q X  2 -]- o~2X 

Y 2 Z  + ol3YZ 2 = X 3 + a l X 2 Z  + a 2 X Z  2. 

Notice that  this curve may be expressed as the determinant of the following 

matrix: 
[ a lX 'bOz2Zx  Y~Ox a3Z ) 

F = (fij) := I X ZO 
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for appropria te  ai  C Z. We define the Lie algebra L to be 

L = (A1,A2, A3, B1,B2, B3, X , Y , Z :  (Ai, Bj) = f i j (X,Y,Z)} .  

So how does the calculation of  the zeta function associated to this Lie algebra 

differ from tha t  presented in [duS1]? The simple answer is: not  a lot. The 

working is made more difficult due to the fact tha t  the matr ix  in this case is 

not  symmetr ic  and so a lot of details tha t  could be brushed under the carpet  

previously now have to be confronted head on. Also, the measure of sets tha t  

we need to calculate to show the dependence on the curve is more difficult to  

realise. In any ease I will now proceed to give the calculations in full. Notice 

tha t  these calculations are only valid when we consider the local zeta function of 

L at primes p not dividing non-zero members  of the se t  {O~1, OL2, O~3) and also not 

dividing the discriminant of the elliptic curve. At these primes the calculations 

can still be performed but  they lead to a long unil luminating case analysis tha t  

the reader can perform for his/herself. 

As outlined above we may write the zeta function as an integral 

~,p(s) -- (1 - p - 1 ) - 9  IV; [mallS-'"" Im9918-gldxl" 

However, the algebra we are working with is class 2 and so we may rewrite this 

integral as 

-- (1 - p - 1 ) - 9  f imlal -a.., im6618-alnal~-Vlnzl~-Sln31~-91dm[. ¢Lp(s) Idnl 
J W  

where now dm and dn are respectively the additive Haar  measures on Tr6(Zp) 

and Tr3(Zp), and W~ consists of pairs of matrices 

(M, N) E Tr6(Zp) x Tr3(Zp) 

so tha t  for j = 1, 2, 3 we have 

(mi4, m/5, mi6)C(j)g + = (ao(j) , /3o(j) ,  7o(j))nln2n3 

whereas for j = 4, 5, 6 

(rail, mi2, mia)C(j)N + = (ao(j), /~o(J), 7o(j) )nln2n3. 

N = 

Here C~o(j),/3o(j), 7o(J) E Zp, b) 
n2 ¢ 

0 n3 
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and 

( 10o) (i0!)(!1i) C(1) - -  0 0 , C ( 2 ) =  0 , C ( 3 ) =  0 , 
1 c~3 0 0 (i00)(01  ) 

C ( 4 ) =  1 0 , C ( 5 ) =  0 1 , C ( 6 ) =  0 0 . 
0 1 0 0 1 0 

Without confusion we can now suppress which case we are dealing with and write 

C~o etc. for Cto(j). In other words, we are integrating by parts: we fix a basis for 

the centre of the algebra and count bases for the abelianisation lying above this 

particular central basis. Then we count occurrences of bases for the centre. It 

is worth remarking here that currently this method has only been made to work 

for class 2 algebras. A major challenge in the subject is to formulate a similar 

method of integration by parts that will enable one to evaluate algebras of higher 

class. We may now write the zeta fimction as a sum 

M 1 , . . . , M  6 , 
N 1 , N 2 , N 3 E N  

where now p (M1, . . . ,  N3) is the measure of those matrices (M, N) with pM~ pN~ 
replacing mi, ni. So evaluating the sum now reduces to the problem of calculating 

the measure of this set. It is in this measure that the elliptic curve and associated 

lines will appear. The measure can again be written as a p-adic integral 

3 
#(Mi~Ni)"~- f(a #(~-~1)'"~(~6)( E tt(~l)(p-m-p-m-1)) Idal'[dbl'ldc[ 

, b , c ) E Z p  \ m > l  

where 1) ~1 is the set of (m2,m3) C Zp 2 so that for j = 4,5,6 there exists 

(C~o,/30, 70) E Zp 3 so that 

(pM, m2, m3)C( j )N  + = (c~o, /30, ~/o)P NI+N~+N~, 

2) gt2 is the set of m3 C Zp so that for j -- 4, 5, 6 there exists (c~o,/30, ?o) C Zp 3 

so that 

(0, P M2, m3)C( j )N  + --- ((~o, flo, "/O)P Nl+N2+N3 , 
and 3) 

f~3-={ 1 
0 

if (0, O, pMa )C( j )N  + = (O~o, /30, "~o)p NI+N2+Na 
otherwise. 
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We can similarly define ~ ' ~ 4 ,  • . , ,  a6 as follows: 

4) f h  is the set of (ms, m6) E Z~ so tha t  for j = 1, 2, 3 there exists (ao,/3o, 7o) C 
Z 3 so tha t  

(pM~ ms, ma)C( j )N  + = (ao,/3o, 7o)p x~ +N~+N3, 

5) ft5 is the set of m6 C Zp so tha t  for j = 1, 2, 3 there exists (ao,/3o, "~o) E Zp a 

so tha t  

(O,p MS, m6)C( j )N  + = (ao, rio, 3~o)P N~+N2+N3 , 

and 6) 

ft6 = { 01 otherwise.if (O,O, pM6)c( j )N  + = (O~o, flo,"fo)p NI+N2+N3, 

Following the notat ion of du Sautoy we set D := ac - bp N2 and then one can 

check tha t  investigating the above conditions, we can rewrite them as follows: 

EVALUATING tt(~i). TO calculate the value of #(~I) notice that the conditions 

for a point to be in the set become 

(oqpM1 q-N2+N3 _]_ 7122pN2+Na, pM1 +N2+Na, rI23pN2+N3 ) .= 0 n~tod p N1 +N2+Na, 

(pM~,m2, m3) --a 0 0 -- Omodp N~+N2 
pN~ 0 --a 

and 

( Ozlb ~- a~p NI+N2 
pN1 + N2 (pM, m2, m3) \ - c p  N~ 0 

--cpN1 -}- o~3p NI + N2 
o ) b 

is 0 m o d p  N1 q-N24-N3. 

Thus we have 

LEMMA 2.1: g(~21) is given by: 

0, if  M1 < N1 
g(f t l )  = p-2Wlp(fy),  if  M1 _> N1 

where al  is the set of those (m2, m3) C so that 

(pM1, TrY2 ' ?lt3)(S1, $2) ------ 0 m o d p  N=+N~ 
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_actspNa _apN3 pNt +N3 
(S1, $2) ---- --ap Na 0 0 

pNI+Na 0 --ap Na 
alb -~- a2p N~+N2 

• • • b pNl +N2 

--cp N1 0 

_epN1 q_ o~3pN1 +N2 ) 
0 

So given a solution (pM~ X,  Y)  to this congruence, all other solutions will be 

of the form (pM~ X, Y) + (0, m2, m3) where here (m2, m3) is a solution to the 

congruence 

(2.1) 

- a p  N3 0 0 
(m2,m3) pNI+N3 0 --ap N3 "'" 

pN1 + N~ 0 ) 
"'" --cp N1 0 ~ =-- Omodp N2+N3. 

So to sum up, the value for #(gtl) is contained in the following 

PROPOSITION 2.2: I f  Ms < Us + [72 - W1 - W2 - W3 + N1 + N2 + N3 then 

#(fl l)  = O. For all other values of M1 we have 

P ( ~ I )  = pU1+U2-(NI+N2+N3) 

Here we have defined 

Vl := min{ul, N2 + N3} and U2 := min{u2, N2 + N3} 

with 

and 

ul := min{v(detX)  : X a 1 x 1 minor of matrix in (2.1)} 

u2 :-- min{v(de tX) :  X a 2 × 2 minor of matrix in (2.1)} - tt 1. 

We can evaluate these by hand and so find that 

ul = min{v(a) + N3, N1 + N3, v(b), N1 + N2, v(c) + N1} 

and 

u2 = min{2v(a) + 2N3, v(b) + N1 + N2 + N3, 2N1 + N2 + N3, v(a) + v(b) + N3, 

v(a) + N1 + N2 + N3, v(c) + 2Na + N2, 2v(b), v(b) + N1 + N2} - Ul. 

Similarly we have set 

IV/=  rain{N2 + N3, wi} 
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with the wi defined as the ui were above. Thus one may check, using the de- 

terminants evaluated in the Appendix to this paper, that we have the following 

values for Wl, w2, w3: 

u,l = min{v(a) + N3, Nt  + N3, v(b), N1 + N2, v(c) + N, ,  

v(~3p N~ - c) + N,,  v(~,~ + ~pNI+N2)}; 
w2 : min{v(a )  T NI  + 2N3, v(a)  + NI  ÷ N2 + N3, v(a)  ÷ v(b) + N3, 2v(b), 

v(a) ÷ v(cx3p N2 -- c) ÷ N1 ÷ N3, v(b) + Ni W N3, 2N1 ÷ N2 + N3, 

2(N1 .4- N2), v(t)) .4- v(a3p N2 - c) .4- N1, v(a3p N2 - c) .4- 2N1 .4- N2, 

v(b) + N, .4- N2, 2(N1 .4- N3), v(b) .4- Nt  .4- N2 .4- N3, v(c) .4- 2N1 .4- N2, 

v(c - c~3p u2) + 2N1 + N3, v(a) + v(c) + N1 + N3, v(c) -4- 2N1 + N3, 

V(C) + V(~)) .4- NI ,  v(c) .4- 2N1 .4- v(o!3p N2 - c), 2v(a)  .4- 2N3} - wig 

and finally: 

w3 = min{3v(a) .4- 3N3, v(a) + v(b) + N1 .4- N2 + N3, 2v(a) .4- v(b) .4- 2N3, 

v(b) .4- 2Nl  .4- N2 .4- N3, 3N1 .4- N2 .4- 2N3, 2v(a) .4- Nl .4- 2N3, 

v(t)) .4- v(b) .4- N,  + N2 + N3, v(c~3p N~ - c) -4- v(b) + 2Na + X.2 .4- N3, 

v(o~3p N2 - c) .4- 3N1 .4- N2 -4- N3, v(a) -4- v(c) .4- 2N1 .4- N2 .4- N3, 

,~,(a) + 2v(~) + ~ ,  ~(c) + 3N, + ~ + X3, v(a) + v(b) 

+ N1 + N3, v(a) + 2N1 + N2 + N3, v ( - b  3 .4- cxlD2p x'+N~ 

.4- O~2{)p 2(Nt +N2 ) _ c2 p2N1 pN1 +Nz .4- 0¢3cp 2Nt pN1 + U2 ) } _ W l _ ,[02. 

We can similarly evaluate Q2 . . . . .  ~6 and get the following values for these 

functions: 

PROPOSITION 2.3:  

U(~2) = { 0 i f  M2 < V1 - (U1 .4- U2) .4- N1 .4- N2 -4- N3, 
pV~-(N~+N2+N3) otherwise; 

where V1 is defined to be 

V1 := rain{N1 .4- J~3, v(a) .4- N3, v(c) .4- N,, v(b), N2 .4- N3}. 

PROPOSITION 2.4:f~3 is 1 i f  and only i f  

M3 > NL,M3 > N3, A I 3 ÷ v ( a )  >_ Nt  ÷ N2, 

M3 + v(~) >_ N1 + N2 + N3, M3 + v(c) >_ N2 + N3 



76 C. GRIFFIN Isr. J. Math. 

and is 0 otherwise. 

In an entirely similar fashion one can establish 

PROPOSITION 2.5: P(~4) =- 0 if  M4 < U4 -f- U5 - (W1-1- W2 -4- W3) A- N1-4- N2 -f- N3 

and for all other values of M4 we have 

f 0 
p V, I-( N1 

L 

p(~4) = pU~+U~-(N,+N~+N~); 

if M5 < I/4 - (U4 "I- Uh) -~ N1 ~- N2 -{- N3, 
+N~+N~) otherwise; 

and ~6 is 1 if  and only if 

M6 > N1,M6 + v(a) >_ N1 + N2, M6 _> N2, 

M6 + v ( - e p  N~ -4- ol3pNl+N2), M6 + v(b) ~_ N1 + N2 + N3 

where the Ui, Vi are defined as before. 

One can check that  the only case that  leads to non-monomial conditions on 

the entries of the matrix occurs when we evaluate U5: 

u5 = min{2v(a) + 2N3, v(a) + N1 + N2 + N3, v(t)) + N1 + N2, 

v(a) + v(b) + N3, v(b) + g~ + N2 + N3, 2N1 + N2 + N3, 

v((~3p N2 - c) + 2N1 + N2, 2v(b)} - u4. 

In order to show that  evaluating the zeta function of the group depends on 

counting points on the elliptic curve m o d p  it will be sufficient then to calculate 

the measure of the following set. For all natural numbers A, B, B, C, F, G, H we 

need to find the value of 

. _  3. v (a)  = A, = B ,  v (c)  = C,  v(b) = B #A,B,B,C,F,G,H "-- p{(a, b, c) • Zp. 
v(ep N1 --~ o~3p NI+N2 ) = G, Y(Oll~) "~ ~2p NI+N2 ) = H, 

v(_~3 + C~l~2pN1 +N2 + a2~p2(N1 +N~) _ c2p2NIpN~ +N2 

A- O~3cpNlp 2(Nl+N2)) = F}. 

The first thing to notice is that,  writing 4) for the set (b/c + pN2-Czp ) U pAZp, 

we have 

0, 
p-A(1 _ p - l ) ,  

. (e)= p C - N 2 ,  

p-A,  

if B # A + C, N 2 -  C > m i n { A , B -  C}, 
if B # A + C, N2 - C <_ rain{A, B - C}, 
if B =  A + C , A + C >  N2, 
i f B  = A + C , A + C  <_ N2; 
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it is sufficient for us to evaluate 

.__ 2. v(b)  =- B ,  v (c )  = C ,  v(oz3p NI+N2 - cp  N1 ) -=- G,  ~ , c , r ,  G m  " -  M(k e) e Zp. 
t,(OZl ~) nt_ o~2pNa +N2 ) = H ,  v ( - b  3 + Ozlb2p N1 +N2 + ct2~)p2(N1 +N2) 

- c2p 2u~ + a3cpU~p 2(N~+N~)) = F}.  

Thus by changing the value of C, writing (b, B) for (1),/)) and N for N1 + N2 we 

need to calculate the value of 

2. v(b) = B, v(c) -- C, v ( - c  + a3p N) = G, l tB,C,F,G,H : =  #{(b,c) C gp .  

v(C~lb + (x2p N) = H, v ( - b  a + oqb2p N + ct2bp 2N 

-- c2p N -[- ( t3cp 2N ) = f } .  

We split the analysis into three sections: 

(1) N _< B, C; 

(2) B < N , B < _ C ;  

(3) c < B, x .  

CASE 1: N < B, C. 

Setting b' = b / p  N ,  e I = c / p  g and replacing b', c' by b, c respectively, we must 

evaluate in this instance 

2. v(b) = B, v(c) = C, v(a3 - c) = G, p{(b, c) ~ Zp. 

v (a lb  + ct2) = H, v(b 3 - crib 2 - ce2b + c 2 - cx3e ) = F } .  

Notice that  the calculations which follow assume that  axC~2a3 # 0. The special 

cases that  follow when this is not the case are all handled in the same way and 

so we suppress the details. 

Notice also that  the above set can be expressed as a Boolean combination of 

sets of the form 

{(b, c) e Z~: ~(b) = u ,  ,,(c) = C, v ( ~  - ~) > a ,  

v(axb + a2) > H, v(b 3 - a lb  2 - a2b + c 2 - a3c) >_ F}. 

We write d(B, C, F, G, H) for the measure of this set and evaluate this. The first 

thing to notice is: 

LEMMA 2.6: Suppose B, C > O. Then G = 0 = H, otherwise d(B,  C, F, G, H) is 

O. When G = 0 = H then the measure depends upon the value of F in relation 

to that of B and C. Namely: 

(1) if  F <__ min{B,C}  then d(B, C, F ,O)= p -Cp-B(1  --p-1)2; 
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(2) if  F < nfin{B, C} then d(B,  C, F, 0) = 0 unless B = C when d(B,  C, F, O) 
= p - F p - C ( 1  _ p - l ) .  

Next consider what  happens for C > 0, B = 0. As in Lemma 2.6 we require 

G = 0 in order to get a non-zero value for the measure. We encapsulate what  

happens in this instance in the next 

LEMMA 2.7: Suppose that  C > 0 = B = G. Then 

(1) H > 0 ~ F = 0 or the measm'e is zero. In the case H > 0, F = 0 we must  

evaluate 

~t{(b, c) • 7]~p2: v(b) -- 0, .u(c) = C, y(Ozlb -~- oz2) ~ H} 

which is dependent  upon the number  o f  points on the line 

{alb  + a2 --- O}(Np). This is uniform in p and so can be neglected. 

(2) I f  G = 0 = H then 1 <_ F <_ C ~ d(O,C,F,O,O) = 2 p - F p - C ( 1  _ p - l ) .  

Next we consider the case B > 0, C = 0. As previously it is immediate  tha t  

to get a non-zero value for the measure we require tha t  H = O. When  H = 0 we 

evaluate 

d ' (B ,  0, F, a ,  o) = #{v(b) = B,  v(e) = 0, v(c~3 - e) = G, 

v(b 3 -  ~lb 2 -  a 2 b +  c 2 - a3e) _> F}.  

LEMMA 2.8:  

(1) I f  F > m i n { B , G }  then d ' ( B , O , F , G , O )  = O. 

(2) I f  f <_ min{B,  G} then d ' (B ,  O, F, G, O) depends upon the number  of  points  

on the line {a3 - c = 0}(Fp) and so is uniform in p. 

Finally, we must  consider what  happens when B = C = 0. In this case we 

want to calculate a value for 

d o , o , F . a , .  = 1,{(b, c) • , ,(b) = 0, , ,(c) = 0. - c) _> a ,  

v (a lb  + ct2) >_ H, v(b 3 + a lb  "2 + a2b + c 2 + a3c) _> F}.  

The dependence on the varieties described in Theorem 1 will be born  out  of the 

following 

LEMMA 2.9: Let  K >_ 1, let (b,c) • (p@z) with 

Alb  3 + A2b 2 + A3b + Asc 2 + A6c -- 0 m o d p  K. 

where here p is a pr ime dividing neither the discriminant nor the coefficients o f  the 

curve. Then there ex i s tp  pairs (hi, cl) • ( ~ )  so that  b -= bl, c = c~ m o d p  K+l 

and 

(2.2) Alb  3 + A2b~ + A3bl + A5c~ + A6c, =- 0 m o d p  K+ ' .  
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Proof: Sett ing bl = b + /~p l ,  and cl = c + ?pK we want  to count  pairs (~, ~) E 

{0 . . . . .  p -  1} 2 so tha t  (2.2) is satisfied. Expand  this equat ion and notice tha t  

we nmy write 

Alb 3 + ' . .  + A6c = tp K 

for some t E N, and then it follows tha t  we are looking for solutions of the linear 

congruence (in te rms  of ~ and ~,) 

t +/~(362A1 + 2hA2 + A3) + "~(2A5 + A6) -- 0 modp .  

The  only way this congruence cannot  have p solutions is when bo th  the coefficients 

of/3 and ? are zero m o d p .  But  this happens  only when p divides the diser iminant  

of the curve, contradict ing the hypothesis  we made.  Thus the result  is proved. 

II 

We will split the calculation of the measure  into a case analysis dependent  

upon the values of F, G, H:  

(1) F , G , H = 0 ;  

(2) G , / - / =  0; 
(3) F, H = 0; 

(4) F, C = 0; 
(5) F = 0; 
(6) G = 0; 

(7) H = 0; 

(8) F , G , H  ¢ O. 

1) We have d ( 0 , 0 , 0 , 0 , 0 )  = #(Zp × Zp), which is uniform in p and so can be 

neglected. 

2) I t  follows s imply fl'om L e m m a  2.9 tha t  

d(O, O, F, O, O) = p-F+td(O, O, 1, O, O) = p-F+1 (IE(Fp I _ 1). 

3) We have d(0, 0, 0, G, 0) = (1 _ p - 1 ) p - a .  Notice tha t  this expression actual ly  

involves counting points on the line {(~3 - c = 0}(Fp) but  this is suppressed due 

to the uniformity of this variety. 

4) In an identical fashion, we have d(0, 0, 0, 0, H)  = (1 - p-1)p-H.  

5) d(0, 0, 0, G, H)  = p - C - H ;  here we are counting points on the intersection 

{~3 - c = 0 }  n { ~ b +  ~ = 0 } ( ~ ) .  

6) d(0, 0, F, 0, 1) = p -F+1  (E  V/{c~lb + c~2 = 0}(Fp)) and the case for a general 

H follows as a s imple recurrence relation. 

7) d(0, 0, F, 1, 0) = p - F + t ( E  n {c~:~ - c = 0}(Fp)) and the case for a general G 

follows as a s imple recurrence relation. 
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8) d(0,0, F, 1, 1) = p - F + l ( E n { a l b + a 2  = 0 } n { a 3 - c  = 0}(Fp)) and the case 

for general G, H follows as a simple recurrence relation. 

This completes the case N < B, C. Notice that this is as stipulated by the 

work of du Sautoy and Grunewald in [duSG1] in that finitely many varieties, and 

their intersections, arise in the evaluation of the local zeta function. 

CASE 2: B < N, B _< C. 

Setting b I = pN/b, e' = c/b and replacing as before we must evaluate, for 

B > _ I , C > O ,  

2. v(b) = B, v(c) = C, v(ba3 - e) = G, p{(b,c) C Zp. 

v(oll + ct2b) = H, v(1 + Ctlb + a2b 2 + c2b + ol3cb 2) = F}. 

Using the same notation as before we can see that F, H > 0 ==v d(B, C, F, G, H) 

is 0. The only non-trivial measures arising here are comained in 

LEMMA 2.10: Suppose that F = 0 = H. Then 

(1) G > min{B, C} ~ d(B, C, O, G, O) = O, 

(2) min{B, C} >_ G =* p -Bp-C(1  - p-1)-2 .  

CASE 3: C < B , N .  

As is now becoming familiar, we set b' = b/c, c' = pN/c  and relabelling as 

before we must evaluate for B, C > 0 

c) c v(b) = B ,  v (c )  = c ,  - 1) = G, 

v(axb + a2c) = H, v(b 3 -  axb2c - a2bc 2 + c -  aaC 2) = F}. 

We again immediately notice that G > 0 will give us a set of measure 0. The 

remaining cases, with the usual notation, are encapsulated in the following 

LEMMA 2.11: 

(1) I f F  <_ min{3B, C} and g _< min{B,C} then 

d(B, C, F, O, H) = p -Cp-B(1  - p-l)2;  

(2) if  either F > min{3B, C} and 3B ¢ C, or g > rain{B, C} and B ¢ C, 

then d(B, C, F, O, H) = O; 

(3) i f F  > min{3B, C } , 3 B  = C and H _< min{B,C} then 

d(B, 3B, F, O, H) = p - r p - B ( 1  -- p- l ) ;  
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(4) i f  H > min{B, C}, B = C and F <_ min{3B, C} then 

d(B, C, F, O, H) = p -Hp-B(1  -- p - l ) .  

So to finish I will briefly outline why the calculations I have performed lead to 

the theorem stated in the Introduction. This is exactly as contained in [duS1] 

and so I only include it for completeness. The calculations carried out here are 

sufficient to prove 

PROPOSITION 2.12: There exists a finite partition U i ~ s A i  of R 9 defined 

by linear inequalities with coefficients in Q and for all i C S polynomials 

Pi, Qi, Ri, Si, Ti in Q(X) and linear functions c~i, ~i, 7i, 5i, ei so that if 

A = (A,B,[3,  C , F , G , H ,  NI, N2) E N 9 N A i  

then 

#{ . . . ]  =Pi(p)p ~'(A) + Q i(p)[E(Fp)]p ~(~) + Ri(p)[E N Ml(Fp)[p ~'(/') 

+ S.i(p)[E A M2(Fp)[p &(A) + Ti(p)lE N ~fl A M2(Fp)ip ('(A). 

From this result, together with the values we worked out for the functions 

~tl . . . . .  ~6 one can deduce that  there exists a finite partition [J ics  Ai of R is 

defined by linear inequalities with coefficients in Q and for all i E S polynomials 

Pi, Qi, Ri, Si in Q(X) and linear functions oh,/~.i, 7/, 6i, el, ai, bi, ci, di, ei so that  if 

A = ( A , B , [ ~ , C , F , G , H ,  M 1 , . . . , M 6 ,  N1,N2, N3) then 

~,P = E E Pi(P)Pa~(A)+ai(A)s -[- Qi(p)]E(Fp)]P/3KA)+bi(A)s 
iES AENlsNAi 

-]- Ri(p)]E A J]/Ii(Fp)ip ")~(A)+e'(A)s 

+ S (p)IE n M:(Fp)b 

T (p) IE n M1 n M2( ,)Ip 

Adding all this together is almost sufficient to prove Theorem 1. It  is merely 

necessary to check that  the rational function P2 is not identically equal to 0. 

3. C o m p l e t i o n  of  t h e  p r o o f  of  T h e o r e m  1 

Although the Theorem is now complete, in order to show that  this collection 

of nilpotent groups really does encode the arithmetic of the elliptic curves it 

is necessary to show that  the rational function we have called P2 is non-zero. 

As things stand we have merely shown the existence of such a function without 
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saying anything about  what  it looks like. To show the function is non-zero, it is 

sufficient to show tha t  counting subalgebras of some small p-power index in L is 

dependent on counting points on the reduction of the elliptic curves in question. 

This is a simple exercise in solving some congruences modp .  

So again let L = L(E)  be the Lie algebra with presentat ion as described earlier. 

Throughou t  this calculation we will assume we are dealing with a prime p not 

dividing alC~2a3 as this will simplify greatly the work involved. Then  to count 

ideals of index p5 say, it will be sufficient to count the nmnber  of pairs of  matrices 

((mij), 0 n2 c so tha t  the following four conditions are satisfied: 
0 0 n3 

(1) mij ,nk • Z; 

(2) O < ??zij < mj j ,  0 < a < n 2 ,  O < b,c < rt3; 
(3) mjj  = p M ~ , n y = p N j ,  M l + . . . + N 3 = 5 ;  

(4) for i = 1 , . . . , 6 ,  

j = 1, 2, 3 ~ (mi4, mi5, mi6 )C( j )N  + = (O~o,/30, 7o)nln2n3, 

j = 4, 5, 6 ~ (ran, mi2, mi3)C( j )N  + = (c~0,/30, %)n ln2na .  

Now the first thing to notice is tha t  if we work out the left hand side of condition 

(4) for all the relevant values of i, j and ai then we can immediately deduce the 

following 

LEMMA 3 . 1 : M 1  . . . . .  M6 >_ N1; M3, M6 >_ N2; M2, M5 > N3. Hence N1 = 0 and 

0 < N2, N3 < 1 and furthermore N2 + N3 = 0, 1. 

To make the analysis tha t  follows more tractable,  we again split the working 

into several separate cases. 

CASE 1: N 2 = N 3 = 0  

This is easily dealt with. In this case N = Id3, no conditions arise from (4) 

and we merely have to count  all matrices (mij) tha t  can occur. This is uniform 

and polynomial  in p and so can be encompassed under the umbrella of a rational 

function of p ,p -8  in the evaluation of the zeta function. As such it doesn ' t  

concern us here. 

CASE 2: N2 = 1, Na = 0. 

It  follows from the conditions st ipulated above tha t  Na = b = c = 0 and 

0 < a < p - 1. Then condition (4) becomes 

(mi4, mi5, nzi6) p - a  -- 0 modp ,  
0 1 oe3p ] 
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[ oqp --act1 ip ) 
( m i l , m i 2 , ? l t i 3 ) ~ O  p --a  1 ---- Omodp ,  

i) (rt~i4,~Tti5,mi6) 0 --  0 m o d p ,  
0 

(lrti4,11~i5,?~li6) 0 ~-- 0 m o d p ,  
- - a  

a i) (mil,mi2,mi3) 0 ---- 0 m o d p ,  
0 

( ~ i l ,  ~7~i2, m i 3 )  0 ---- 0 modp .  
- - a  

So if a = 0 then the only thing these matr ices  tell us is tha t  mi6 =- 0 m o d p ,  

from whence it follows tha t  mi4 = rni3 = rail =- 0 m o d p  and thus the number  of 

matr ices  in this case is again uniform and polynomial  in p. If, on the other  hand, 

1 < a < p -  1 then  we see tha t  rail  = 0 _= r n i 4 m o d p  and so_a = (1 ,0 ,1 ,1 ,0 ,  1) 

and again we will get a mfiform expression. 

CASE 3: Suppose finally tha t  N3 = 1, 572 = 0 = a. 

In this case the conditions the matr ices  must  satisfy become 

(3.1) ((/2 - ba l )mi4  + bmi5 + (eta - c)mi6 =- 0 m o d p ,  

(3.2) bmi4 + mi5 =- 0 m o d p ,  

(3.3) --C71~i4 + bmi6 -- 0 m o d p ,  

(3.4) (c~2 + bcq )mi ]  + bmi2 - crni3 = 0 m o d p ,  

(3.5) brnil + mi2 = Omodp ,  

(3.6) ( - c  + a3b)miz  + bmi3 - 0 modp .  

Recall t ha t  we already know tha t  p divides m22, m55 by L e m m a  3.1 and this 

is confirmed by equations (3.2), (3.5). Set t ing i = 3, 6 allows us to deduce the 

following congruences involving entries on the diagonal  of (mij ) :  

(3.7) -bra66 - 0 m o d p ,  

(3.8) (c~3 - c)m66 = 0 m o d p ,  

(3.9) - b m 3 3  =- 0 m o d p ,  

(3:10) crn33 = 0 modp .  
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So we do a case-by-case analysis ,  dependen t  on the values of b, a3 - c, c m o d p .  

SUBCASE 3.2: b ~ 0 m o d p  so t ha t  p does not  d ivide  b. 

We can immed ia t e ly  see t ha t  p divides m33, m66 and so a = (0, 1, 1, 0, 1, 1). 

Se t t ing  i = 1 tells us t ha t  

m12 ---- - b  m o d p ,  

- ( c  - 
~Ttl3 ~ m o d p ,  

b 

(a2 + a l b )  + bin12 - cm13  - 0 m o d p ,  

and  so we have uniquely de te rmined  m12, ?Ttl3 in t e rms  of b, c, from which it 

follows by e lementa ry  analysis  t ha t  (b, c) E E ( F p ) .  

A n  ent i re ly  s imi lar  process gives us the  same in format ion  abou t  m45, m46. So 

now to deduce t ha t  in this  case we have no a l te rna t ive  bu t  to count poin ts  on the 

reduct ion  of the  el l ipt ic curve, it  will be sufficient to demons t r a t e  wha t  values 

the  o ther  entr ies in the  m a t r i x  M can take.  

Recal l  we know from the four condi t ions  tha t  mi4 = 0 Vi < 4. So we need 

to invest igate  how to de te rmine  the remain ing  values of 71ti2 , ~/~i3, ~7~i5, m i 6 .  This  

is easily done s imply  by  examining  the equat ions  for values of i running  from 1 

th rough  5 and one can see t ha t  all the  ou t s t and ing  values are uniquely de te rmined  

by the choice of poin t  (b, c) on the  reduct ion  of the  curve. 

SUBCASE 3.3: b -  0 m o d p .  

The  6 condi t ions  then  become 

a 2 m i 4  + (a3 - c)rni6 =-- 0 m o d p ,  

mi5 -- 0 m o d p ,  

- c m i 4  =- 0 m o d p ,  

o~2mi1 - -  c~rti3 ~ 0 m o d p ,  

mi2 --- 0 m o d p ,  

(a3 - c ) m i l  = 0 m o d p .  

F rom these equat ions  it is possible to show tha t  in two of the cases which can 

occur,  namely  1) c, a3  - c ~ 0 m o d p  and 2) c _-- 0 m o d p ,  a3 - c ~ 0 m o d p ,  the  

fact t h a t  we are working wi th  ideals of index p5 means  tha t  no such mat r ices  can 

occur.  I t  seems reasonable ,  however, t h a t  if we increase the  exponent  of p then  

mat r ices  will occur tha t  bear  witness to these congruences.  However,  suppose  

we look at  the  final possible  case c ~ 0 m o d p ,  a3 - c = 0 m o d p .  In this  case the  
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(~2mi4 :-- 0 modp,  

mi5 - 0 modp,  

crtti4 =-- 0 modp,  

O~277til -- c~7~.i3 ~ 0 modp,  

m i,2 = 0 modp,  

and so the only constraints the coefficients are bound by are 

7n22 , 1n33, ?n44, lYt55 ~ 0 modp.  

It  can again be checked that  this leads to a polynomial uniform expression in p. 

This finishes the calculation and demonstrates that  it really is necessary to count 

points on the elliptic curve; there is no quirk which ensures a simple expression 

after all. Thus Theorem 1 is proved. | 

4. P r o o f  o f  T h e o r e m  2 

First let us recall what Theorem 2 stated: 

THEOREM 2: Let  C be a curve o f  genus 2 overQ  with a rational point  in Q. Then  

there exists a 15 generated, class 2 torsion-fi'ee ni lpotent  group G and associated 

Lie algebra L, 1 E N, rational functions P, Q1 . . . . .  Ql 6 Q(X, Y )  and varieties 

V1 . . . . .  t~ so that for ahnost  all primes p 

1 

~ , p ( S )  = ~ = ;L,P (s) IC(Fv) tP(P'P-~)  + E tk:i(Fp)le~(P'P-~)" 
i~ l  

Furthermore, it is strictly necessary to count points  on the reduction of  the curve 

C in the evaluation of  the zeta function. In particular, the ~ are varieties o f  

genus smaller than 2 and C occurs in the subring o f  the motivic  zeta function 

one can associate to the group G. 

As this result follows along very similar lines to Theorem 1, a lot of details will 

be swept under the carpet. It  is known (see [M2, Ch. 1] for example) that  every 

curve of genus 2 over Q is of the form 

y 2  = a o X 6  q_ . . .  q_ a6 

and so every curve of genus 2 with a rational point is of the form 

]/2 + bY  = a o X  6 + . . .  + abX  
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or projectively of the form 

y 2 Z 4  _~_ b y  Z 5 = ao X 6  -[- . . .  -4- a s X  Z 5 

and so is expressible as the determinant of 

G : =  
/ i  x o  2x+ 3z j Z o  xz  szx oO 

0 0 Z X 
0 0 0 Z . 

\ /36X 0 0 0 0 Y q- /37 Z / 

Thus we will count ideals of p-power index in 

L := (A1 , . . . ,A6 ,  B I , . . . , B a ,  X , Y , Z :  ( A i , B j )  = g i j ( X , Y , Z ) } .  

For an algebra of this size, it becomes very difficult to evaluate the integral that  

would give us a full description of the zeta function encoding the ideal structure of 

L. Thus for this algebra, we will content ourselves with evaluating the coefficients 

of the zeta function for small powers of p in order to demonstrate that  evaluating 

the zeta function does depend upon the number of points on the genus 2 curve 

as claimed. Given the work of du Sautoy and Grunewald in [duSG1] this will be 

sufficient to prove Theorem 2. This will follow exactly as for the elliptic curve 

example already considered, and in fact the details are very similar also. Recall 

that  in order to count ideals of index pn in L it is necessary and sufficient to 

count all pairs of matrices ((rnij), 0 n2 e ) so that  the following four 
0 0 n3 

conditions are satisfied: 

(1) m i j , n k  C Z, 

(2) 0 ~ mij  < m j j ,  0 <_ a < n2, 0 <_ b, c < n3, 

(3) m j j  --~ pMj,  n j  ~- pNj M1 + . "  + N~ = n, 

(4) for i = 1 , . . . , 6 ,  

j = 1 , . . . ,  6 ~ (mi7 , . . . ,  m i 1 2 ) C ( j ) N  + -- (C~o,/3o, 7o)nln2n3,  

j = 7 , . . . ,  12 ~ (rail . . . . .  mi6, ) C ( j ) N  + = (C~o, 30, 7o)nln2n3,  

where the matrices C ( 1 ) , . . . ,  C(12) are defined as in the elliptic curve example. 

Then if an denotes the number of ideals of index pn in the algebra L, then 

an "~ E C(a,b-)pl2(bl+b2+b3) 

<(_~,b)>=~ 
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where C(a,_b) denotes the number of pairs of matrices satisfying the above con- 

ditions with diagonal entries p~ ,  pb~ respectively. Also note that  by < (_a, b) > 

we mean the sum of the entries in the vectors. Again we immediately get some 

restrictions on the values the diagonal entries of the matrices can take which are 

included in the next 

LEMMA 4.1: 

(1) a l , . . . , a 7 ,  a9 . . . . .  a12_> bl, 

(2) a2, a4, a5, (t12 > b3, 

(3) a6, a12 > b2. 

We consider the case n = 11, as in this instance it is a simple task to denton- 

strate the dependence on the curve of the number of ideals of given index. The 

first thing to notice is that  the above Lemma forces b l  = 0. We consider the case 

( ~ , b ) > = ( 0 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 1 ) .  

In other words, we are counting pairs of matrices (M, N)  in which (10 ) 
N - -  0 1 , 

0 0 

the diagonal entries of M are (1, p, p, p, p, p, 1, p, p, p, p, p) and condition (4) above 

has now reduced to (replacing b by -b )  

cmi7 + bmis +/31bmi9 + (/32b +/~3)7// i l l  ~-/~4~ti12 ~ 0 modp,  

mis + bm~9 +/35m~10 - 0 modp,  

rni9 + bmilo ~ 0 modp,  

milo + broil1 =- 0 modp,  

r a m  + broil2 =-- 0modp ,  

~6bmi7 + (/37 - c)m~12 -= 0 modp,  

- c m i l  + bm~6 =- 0modp ,  

br~til + ~7ti2 ~ 0 modp,  

/31brni1 + bm~2 + m~3 = 0modp ,  

/35m~2 + bmi3 + mi4 -- 0 modp,  

(/?2b +/?3)rn4a + bmi4 + mi5 =- 0 modp,  

/34rnil + bmi5 + (/37 - c)mi6 - 0 modp.  



88 C. GRIFFIN Isr. J. Math. 

Notice that if b, c = 0, then these conditions reduce even further and we get a 

uniform number of pairs of matrices, regardless of the prime p. The interesting 

case is when b and c are non-zero. In this case, as for the case of the elliptic curve 

example, it is simple to see that the number of pairs of matrices that  occur is 

dependent on counting points on the reduction of the curve. For M is uniquely 

determined and the above conditions imply that the number of various N that 

can occur is IC(Fp)l -  1. Theorem 2 now follows as in the work of du Sautoy in 

[duS2] which we mirrored in Section 3 of this paper. | 

Remark: It is possible to complete this working and get a full description of 

a11. However for the purposes of the Theorem we have sufficient detail. 

5. Counting all subalgebras 

We have given a fairly complete description of the zeta function counting ideals 

of the Lie algebras considered in the proofs of Theorems 1 and 2. We now digress 

slightly and consider the problem of counting all subalgebras in the Lie algebra L 

associated to the elliptic curve of Theorem 1. It is natural, given the presentation 

of L, to suspect that evaluating the zeta function counting all subalgebras of L 

will depend on counting points on the same varieties. Again it is known, from 

[dSG1], that 

~-< (s ~ (1 p - l ) - 9  [ . .  
L , p ,  , = - Imlll s-~' ' ' lm991s-gidxl 

314/ 19 

and we again simplify to write 

C<,p(s) = (1 - p-1)-9 f , ,  im111,-1.., tn31~-91dml, ldnl, 
P 

where now Wp consists of upper triangular matrices M E Tr6(Zp) so that  for all 

l<_i,j<_6, 
6 

m i ( E m j l O ( l ) ) N +  E ~'7,1n2?t3Zp 3 
l=j 

where 

D(1) = 

0 0 0 / 
o o o ° 
0 0 

- a l  0 - 0  2 
-1  0 
0 -1  --0~3/ 
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and D(2) . . . .  , D(6) are defined similarly. As we have done above, it is possible 

to explicitly count all subalgebras of L of small p-power index, and these 

calculations, which are too lengthy to be included here, lead me to pose a 

PROBLEM 5.1: Given the algebra L(E) associated to the elliptic curve E and 

nilpotent group G(E) ,  do there exist rational functions P1, P2, P3, P4, P5 so that 

for almost all primes 

~< p(S) = ~<p(S) =p,  (p, p-8) + iE(Fp )lp2(p, p-~) + IM 1 A E(Fp ) lP3(p, p -~) 

+ P4(p,p-~)]M2 A E(Fp) I + P5(p,p-8)lM1 N M2 N E(Fp) I 

for the same lines M1, M2 ? 

The stumbling block to proving this isn't  one of conception: all the machinery 

would appear to be in place. However, the conditions lead to a very complicated 

case analysis which I have not yet carried out. 

This does lead one to another: 

QUESTION 5.2: Given a finite dimensional Lie ring L over Z, do the same vari- 
eties always arise when one evaluates either the local zeta function counting all 

prime power index subalgebras or the local zeta function only counting all prime 

power index ideals? 

A proof would probably come from understanding the associated motivic zeta 

function better.  For details consult [duSL]. 

6. Quest ions  arising from this work 

We have extended du Sautoy's work to produce a larger class of curves whose 

arithmetic is encoded in the subgroup structure of some nilpotent groups. Al- 

though in the genus 2 example we already see that  things rapidly become more 

complicated as the degree of the curve increases, we may still in theory ask to 

what extent this method of producing curves as determinants holds good. 

In 1921, Dickson [Di] considered the problem over C and gave a description of 

all homogeneous polynomials arising as the determinant of a matr ix  with linear 

entries; his methods were somewhat ad hoc. More recently, Beauville [Be] has 

used the theory of Cohen-Macauley sheaves to show in fact that  any curve over Q 

can be written as the determinant of a matrix of linear forms. Thus it is in theory 

possible to extend further my examples and produce any curve ms a determinant. 

Here we have considered curves of small genus as they are classes of curves 

with a nice general description. It  may be that  one can define other classes of 
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curves with general equations of this type, but it is known for instance [M2] that 

when one considers curves of genus 3, such curves do not have a description of a 

similar kind. There is no general formula giving every such curve. 

Also notice we have stipulated that the curves we consider have a rational point. 

This is to keep notation as simple as possible. For example, it does not appear 

possible to write down a determinant giving an arbitrary elliptic curve; it seems 

that as one considers curves, one must consider alternative styles of presentation. 

The class of curves with a rational point contains a large proportion of all elliptic 

curves, conjecturally 70% of them IBM, W], and this class does have a nice 

expression as a determinant, as we have seen. 

Similar work to that contained here has been carried out by Christopher Voll 

[V], who has also considered the problem of constructing groups whose subgroup 

structure encodes information about the reduction of some plane curves. He con- 

siders more generally curves over an algebraic number field, whose representation 

as a determinant is well known [Di]. He is able to give expressions for the zeta 

function of a Lie algebra whose Lie structure is defined similarly to that con- 

tained here. As such he demonstrates a relationship between plane curves over a 

number field and zeta functions counting certain restricted types of subalgebras 

of a Lie algebra defined over Q. For more details consult his thesis. 

Voll also completes the calculation for the zeta function counting points on the 

elliptic curve E : y2 = X 3 _ X. By explicitly evaluating the rational functions, 

and applying a functional equation for the Well zeta function encoding the num- 

ber of points on E(Fp), he is able to demonstrate the existence of a functional 

equation for this zeta function. One can ask whether this phenomenon will hold 

in full generality, for instance for the zeta flmctions considered here. Denef and 

Meuser [DM] have shown that the Igusa zeta function has a functional equation; 

this zeta function is a special case of du Sautoy and Grunewald's cone integral 

with an empty cone condition. It is possible to construct a cone condition so that 

the associated cone integral does not satisfy a flmctional equation, but can such 

a cone condition come from a presentation for a nilpotent group? Or do the cone 

conditions arising from group presentations all have the necessary symmetry to 

ensure the existence of a functional equation for all group zeta functions? I thank 

Marcus du Sautoy for suggesting this reasoning to me. 

To end this paper, I will now note the determinants arising front the 3 x 3 

minors of the matrix (S1, $2) in the calculation of the zeta functions in Section 

1 of this paper. 
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Appendix 

In the interests of completeness, we include here the determinants arising fi'om 
the 3 × 3 minors of the matrix ($1, $2). By repeatedly applying the condition 

min{v(X + Y), v(X)} = min{v(X), v(Y)} and noticing that we have stipulated 

that p does not divide alc~2a3, it is relatively straightforward to see that the 

value for W3 is as contained in the main body of the text. The same process 

enables one to evaluate W2, U2, [75 but in the interests of brevity we suppress 

the details. Throughout (ai, a2, a3) will denote the determinant arising from the 

matrix formed from the ax, a2, a3 columns of ($1, 5'2) for ai E {1 . . . . .  6}: 
(1, 2, 3) a3p 3N3 

(1, 2, 4) abp N~+N~+2N~ 

(1,2,5) ap 2NI+N2+2N3 

(1, 2, 6) - a ~ ;  ~ 
(1, 3, 4) - b p  2ul+N2+2N3 + o~2a2p Nl+N2+2N3 

(1, 3, 5) p3Nt+N2+2N3 -4- a2bp 2N3 - a2011p Nl+N2+3N3 

(1, 3, 6) abp NI+2Nz -4- a2(a3p N2 - c)p Nl+2N3 

(1, 4, 5) bbp NI+N2+N3 ~- o~2p 3Nl+2N2+N3 - O~lbp 2N~+2N2+Nz 

(1,4, 6) (~3v N~ - c)@ 2N~+N~+N~ + a2ai)p N~+N~+N~ 
(1, 5, 6) (oz3p N2 - c)p 3NI+N2A-N3 + ab2p N3 - abp NI+N2+N3 

(2, 3, 4) -a~bfi ~N,~ 
(2, 3, 5) - a 2 p  N~+N2+2N3 

(2,3,6) 0 
(2, 4, 5) - a c p  "2N1 +N~.+N3 

(2, 4, 6) - a ~ p  N~ 
(2, 5, 6) abp NI+N~+N3 

(3, 4, 5) cp :~N' +x._,+x:, + a~'2pN3 _ ala~pN1 +N.,.+N3 _ acx2p2(Nl+N2)+N3 

(3, 4, 6) ~SpN~ +N~ + a~(a3pN2 _ c)pN~+N3 

(3, 5, 6) (a3p N~ -- c)ap 2Nl+N2+N3 

(4, 5, 6) _~3 + Crl~2pNt +N2 -4- o~2bp 2(N~+N2) - c2p2N~p N~+N~- -4- O~3cp2N~p N~+N2 

So, for example, to get rid of the non-monomial expression 

(a:3pN~ _ c)p3N, +N~+N~ + a~2pN~ _ a~pU, +N~+N~ 

coating from the determinant (1, 5, 6) we apply the condition 

min{v(X + Y), v(X)} = ra in{v(X) ,  v(Y)} 

to the determinants (2,4,6) and (2, 5,6) to eliminate from consideration the 
terms ab2p N3 and abp N~+N~+N~ The same process allows us to neglect all non- 
monomial expressions except that arising from (4, 5, 6). 
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